
6.867: Machine Learning
Physics-Inspired Machine Learning for PDEs

Alexis Charalampopoulos
alexchar@mit.edu

Abhinav Gupta
guptaa@mit.edu

Abstract

This work studies the implementation of Machine
Learning algorithms for solving nonlinear partial dif-
ferential equations, in a hybrid framework. Specifically,
Recurrent Neural Networks (RNN) and Convolutional
Neural Networks (CNN) are used to reduce the high
computational costs involved in solving such problems.
We do not use Neural Nets to perform predictions for
next time-steps but to replace the computationally de-
manding parts of the system. We implement this hybrid
approach for the study of the evolution of free-surface
waves. As a first test case, we study the propagation of
a wave in a periodic cell. For this case we track the
conservation errors regarding the time evolution of the
problem. Afterwards we model the reflection of a soli-
tary wave on a vertical wall and compute the force act-
ing on the wall. We also see the effect of varying hyper-
parameters on the accuracy of prediction of our neural
nets, and perform leading order FLOP count compar-
isons.

1. Literature Review & Motivation
Solving PDE’s can be viewed as a non-linear map-

ping between inputs (initial conditions, boundary condi-
tions, etc.) and output (the desired state variable), which
fits very well in the neural network (NN) based ma-
chine learning paradigm. Hence, this paper explores the
possibility of using various NN based approaches along
with some additional physics based understanding of the
problems to relieve the computational costs of coupled
PDE’s.

In general, the PDE’s representing physical systems
end up being very high dimensional. This is because
of the finite dimensional discretization of a infinite di-
mensional system, which results in a very high compu-
tational requirements for their solutions. In an end-to-
end machine learning approach, we try to find a non-
linear map between potentially very high-dimensional
input and output data pairs, which becomes very tough

to achieve. In general, it would require a neural network
with large number of parameters to be trained with a lot
of data. Luckily, for many cases pertaining to the mod-
eling of physical systems, there exists a vast amount of
prior knowledge that is currently not being utilized in
modern machine learning practice. These include prin-
cipled physical laws that govern the time-dependent dy-
namics of a system, or some empirically validated rules
or other domain expertise. This prior information can
act as a regularization agent that constrains the space of
admissible solutions to a manageable size (for e.g., in in-
compressible fluid dynamics problems the flow should
be divergence free in order to respect mass conserva-
tion). Hence, using such structured information into a
learning algorithm results in amplifying the information
content of the data that the algorithm ‘sees’, enabling it
to quickly steer itself towards the right non-linear map-
ping and generalize well even when only a few training
examples are available [8].

The underlying grand goal of using machine learning
to solve PDE’s is to make it computationally cheaper to
solve. Once trained on the data, only a forward pass
will be required through the NN to produce the out-
put corresponding to the input, as compared to conven-
tional methods which involve solving a potentially high-
dimensional system of linear equations. Conventional
methods also suffer from the inability to handle the non-
linear parts of a PDE’s accurately. The primary interest
of the author’s of this paper is in fluid systems, which
invariably involve high-dimensional linear systems and
non-linearities due to intricate coupling between differ-
ent state variables. In the literature, the intervention
of using a NN has been done in many different ways.
Some use the end-to-end approach as described earlier,
along with incorporating physical conservation laws or
the PDE’s itself in the loss function. While some authors
attempt to directly increase the resolution of coarse sim-
ulations by passing it through a NN and creating finer
scale structures [3, 11, 13, 14]. But such approaches ei-
ther require a lot of data or a big NN architecture.

Another prominent approach which has come-up is

1

a hybrid approach. In most of the numerical solvers,
there is a computational bottleneck equation to solve,
for example the Laplace equation. Hence in such ap-
proaches, only this bottleneck equation is solved us-
ing a NN, while otherwise the solver remains the same.
Thus accelerating computations, and also reducing the
amount of non-linearity the NN needs to capture in such
high-dimensional systems [10, 15].

The primary problem of interest studied in this paper
is the propagation of irrotational water waves. Order-
reduction methods for dynamical systems (e.g. by
means of projecting the governing equations) are a sta-
ple tool for the study of such physical problems. Such
approaches however, fail to yield acceptable predictions
for very complicated dynamical systems, due to the large
intrinsic dimensionality of the underlying attractor and
the possible complexity of transient phenomena. As a
result, scientists have started to add “complementary dy-
namics” to the reduced models, by incorporating time-
lagged states of the reduced-order system (up to some
reference time origin). The use of delayed states (in
an otherwise memoryless physical problem) makes up
for the fact that the reduced-order state variable is not
enough to exactly represent the dynamics of the prob-
lem. The theoretical motivation for this approach stems
from the embedding theorems of Takens [9], who proved
that the attractor of a deterministic dynamical system
can be fully embedded using delayed coordinates.

Hence a NN with some memory would be a natu-
ral choice, and thus long-short term memory (LSTM)
recurrent neural networks (RNN) could be a good op-
tion. Along with LSTM-RNN, Convolutional Neural
Network (CNN) or Fully Connected (FC) with the time
delays of the state as an input could also work. The
training of such NNs takes place by analyzing the dif-
ference between the reduced-order model and the data
of the full problem (projected to the reduced space). In
this project, we propose a study of the effect of using
LSTM-RNN and CNN for enhancing the accuracy of
reduced order models for high-dimensional irrotational
water wave problem. The structure of this project will
be as follows. First, we will present a short exposition
of the irrotational water wave problem. Next, we will
describe the LSTM-RNN and CNN architectures imple-
mented in the hybrid approach for solving our system.
Finally, we will study the physical properties of the solu-
tions derived by this hybrid models. Such a study can in-
clude the conservation of mass, energy and of other pos-
sible invariant quantities, calculation of integral quanti-
ties (e.g. force acted on a wall by waves) and L2 errors
compared to simulations of the full problem. We also do
leading FLOP count comparisons.

2. Problem Definition
2.1. Irrotational Water Wave problem

The physical problem we shall tackle is the evolu-
tion of free-surface waves. Study of water waves and
their interactions with the seabed and possible obstacles
is a fundamental component of coastal hydrodynamics.
The development of fast numerical models that can ac-
curately capture the complex wave dynamics in large
domains is essential for many engineering applications
at sea. The main model for this problem is the non-
linear potential flow model (NLPF). In this project we
aim to reduce the computational cost of using (NLPF)
through machine learning. For this reason we will utilize
the Hamiltonian formulation of the problem presented in
[7]. Since this is a new study, we limit ourselves to the
2D case. For the formulation of the problem, consider
a Cartesian coordinate system Oxz, where the x-axis
coincides with the quiescent free-surface and the z-axis
pointing upwards. An ideal, homogeneous and incom-
pressible fluid fills the time-dependent domain

Dη
h = {(x, z) ∈ X × R, z ∈ (−h(x), η(x, t))}

, t ∈ [t0, t1],
(1)

where X = [a, b] is the common projection of the
curves z = η(x, t) and z = −h(x) on the x-axis. Under
the additional assumption of irrotationallity, the fluid ve-
locity in Dη

h is described by a potential Φ = Φ(x, z, t),
also called velocity potential. This quantity satisfies the
following set of equations (see [6], Ch. 1):

∆Φ = 0, in Dη
h(X, t)

∂tη +∇xη · [∇xΦ]z=η − [∂zΦ]z=η = 0

[∂tΦ]z=η +
1

2
[∇Φ]2z=η + gη = 0

∇xh · [∇xΦ]z=−h + [∂zΦ]z=−h = 0.

(2)

supplemented with appropriate lateral boundary con-
ditions. We also note that, g is the acceleration of
gravirty and ∇ = (∂x, ∂z). Furthermore, boundary val-
ues (traces) are denoted by using brackets with a sub-
script, for example, [∂tΦ]z=η = ∂tΦ(x, z = η(x, t), t).
The local depth of the fluid is H(x, t) = h(x) + η(x, t)
and is assumed to be positive everywhere.

As established in [1], the wave potential can be rep-
resented in the form of the following series expansion,
realizing an exact semi-separation of variables in the ir-
regular, instantaneous fluid domain Dη

h(X, t)

Φ(x, z, t) =

∞∑
n=−2

φn(x, t)Zn(z; η, h), (3)

2

where Zn are prescribed vertical basis functions in
terms of the local values of the free-surface eleva-
tion η(x, t) and bathymetry h(x), and φn are unknown
modal amplitudes. Representation (3) establishes the
change of functional variables

(η(x, t),Φ(x, z, t))⇐⇒ (η(x, t), {φn(x, t)}∞n=−2)
(4)

which can be employed for the dimensional reduc-
tion (elimination of the z variable) of the nonlinear
free surface problem (2). Introducing the representa-
tion (3) of the wave potential into Luke’s variational
principle [5], and performing the variations with respect
to the new independent functional variables η(x, t) and
φn(x, t), n ≥ −2, we eventually obtain, after an exten-
sive analytical treatment presented in detail in [7], the
following Hamiltonian evolution equations with respect
to η(x, t) and ψ(x, t) = [Φ]z=η =

∑∞
n=−2 φn,

∂tη = −∂xη∂xψ + [(∂xη)2 + 1](h−10 φ−2 + µ0ψ)

∂tψ = −gη − 1

2
(∂xψ)2

+
1

2
[(∂xη)2 + 1](h−10 φ−2 + µ0ψ)2

(5)

and the following system of horizontal differential
euqations with respect to the modal amplitude φn, n ≥
−2 at each (x, t):

∞∑
n=−2

(Am,n∂
2
x +Bm,n∂x + Cm,n)φn = 0,m ≥ −2

∞∑
n=−2

φn = ψ,

(6)

supplemented by appropriate lateral boundary condi-
tions on ∂X .

The evolution equations (5) are not closed with re-
spect to η(x, t) and ψ(x, t) since they contain the free
surface modal amplitude φ−2. The latter is provided by
solving the system of equations at each (x, t). Since the
coefficients of this system are defined in terms of η(x, t)
and h(x) and its excitation is ψ, it is expedient to write

φ−2 = F [η, h]ψ, (7)

revealing that φ−2 is in fact a linear, nonlocal opera-
tor on ψ, also dependent (nonlinearly) on the boundary
functions η and h.

Note that the system is complemented with appro-
priate lateral boundary conditions depending on the
application. Hence, although the dynamical problem
can be written for quantities that lie strictly on the
free-surface, for the calculation of the modal amplitude
φ−2 we need to solve a 2D problem in the interior of the
fluid volume. As a result, it becomes obvious that if we
can use Neural Networks to learn the modal amplitudes
with respect to η and ψ, we can significantly decrease
the computational cost of such simulations.

2.2. Why compute φ−2 and not η and ψ

We Machine Learn φ−2 for a few reasons. First, we
need to compute fewer variables that way. Furthermore,
for η and ψ we would have to do a prediction into the fu-
ture, i.e. our mapping would be dependent on δt as well.
Here, we have to find a mapping between η, ψ and φ−2
for the same time-instant. We expect that this approach
will be much more robust. Furthermore, the computa-
tion of φ−2 allows us to compute quantities like energy.
However, if we want to compute velocities, pressure, ac-
celerations in the interior of the fluid, we still have to
solve a substrate kinematic problem. In addition, for the
evolution equations we do not take spatial derivatives of
φ−2. As a result, our numerical method is expected to
be more robust with respect to spurious effects from the
neural net solution. Finally, we would not be able to
predict η from modal amplitudes and ψ in the same time
step, and computing ψ from φ−2 and η at the same time
step would then require us to take spatial derivatives ofψ
making our solution more sensitive to spurious effects.

3. Methodology
3.1. Recurrent Neural Nets - LSTM

RNNs are Neural Networks specifically designed to
easily handle dependency of data from a lot of previ-
ous time-instances of the input and the state-variable. In
theory, RNNs are can account for ”long-term dependen-
cies”. Yet, in practice generic RNN architectures fail to
learn them in any satisfactory manner. The reason be-
hind this inadequacy can be found in [2]. Note: The
same problem was also studied by Hochreiter in 1991,
but since the manuscript is in German and none of the
authors know the language, we were unable to read its
results. To fix this shortcoming, Short Term Memory
(LSTM) networks were introduced by [4]. LSTMs are
explicitly designed to avoid the long-term dependency
problem.

For this problem we utilize a standard LSTM cell
together with a fully connected layer in order to com-
pute {φtn}mn=−2 given ηt and ψt. The architecture of the

3

LSTM approach as well as its coupling with the evolu-
tion equations (5) can be seen in fig. 2.

3.2. Convolutional Neural Nets

Convolutional Neural Networks are a big hit in prob-
lems where local features are important, and long dis-
tance correlations are not important or nonexistent. Such
a feature is very prominent in fluid problems, as the mo-
tion of a fluid particle is determined by the motion of
its neighbouring particles and its current state. Hence
CNNs seem to be a natural choice. As argued earlier,
adding time-lagged states of the system helps to intro-
duce “complementary dynamics”, hence we will include
them also in our input. Thus through CNN, we will try
to capture both spatial and temporal features to make
predictions. Let us assume, that the current time-step is
t, and we have access to the last k time-delays for η and
ψ. Now we can stack these last k solutions as columns
of matrices [η]i=t−ki=t =

[
ηt ηt−1 . . . ηt−k

]
and

[ψ]i=t−ki=t =
[
ψt ψt−1 . . . ψt−k

]
. Now our goal

would be to have [η]i=t−ki=t and [ψ]i=t−ki=t as an input to
our CNN, and get [φ−2]t as the output. Then we can use
[φ−2]t to integrate the free-surface evolution equations
(5) to get ηt+1 and ψt+1. Then again use ηt+1 and ψt+1

to construct [η]i=t+1−k
i=t+1 and [ψ]i=t+1−k

i=t+1 and use it as an
input for the CNN (see Fig. 1).

3.3. Numerical Implementations

As our first test case, we calculate periodic travel-
ling wave solutions using our hybrid method approach.
In more detail, we use a LSTM-RNN and a CNN, for
which as input we give the current free-surface elevation
η and velocity potential on the free-surface ψ as well as
their previous values are preceding time-instances. The
output of our Neural Networks will be the value of the
modal amplitudes at the current time instant. This way
we can immediately integrate in time the free-surface
equations and drastically decrease the computation cost
of the problem.

3.3.1 LSTM-RNN

For the LSTM-RNN we use one LSTM cell with 30
units and the hidden state with a fully-connected out-
put layer. Assuming a horizontal discretization nx , the
output layer has 4nx nodes while the input layer has 2nx
nodes, and the hidden layer 8nx nodes. We set a batch
size of 25 and train on a total of 800 time-series of length
150. We train for a total of 100 epochs. Finally, we use
Adam optimizer for the training procedure. The weights
were initialized using N (µ = 0.01, σ = 0.3), while the
biases using N (µ = 0.0, σ = 0.01). The loss func-
tion consists of the L2 error of the modal amplitudes.

No regularization was needed. We compare our results
with numerical solutions derived from a finite-difference
code.

3.3.2 CNN

The CNN used to produce all the results, contained one
convolutional layer with a filter of 5× 3 and ReLU acti-
vation. Next comes one pooling layer with 2×2 window
and stride 2 max pooling. Then for the fully connected
part, we have one hidden layer with tanh activation. The
dimensions of each layer are dependent on the grid res-
olution of the domain (see fig. 1). The weights were
initialized using N (µ = 0.01, σ = 0.3), while the bi-
ases using N (µ = 0.0, σ = 0.01). For training, Adam
optimizer was used. The loss function consisted of L2

norm of the difference between φt−2 from the NN and
that corresponding generated from a numerical solver
(φ̂t−2), and regularization for weights. To prevent over-
shoots especially near the crest and toughs, max abso-
lute difference between the two was penalized. Atlast,
to enforce smoothness in the solution, absolute sum of
second order derivative of φt−2 from the NN was added
to the loss function. Each of these terms (except the reg-
ularization) was divided by the absolute maximum of
φ̂t−2 form the numerical solution. Hence the loss func-
tion which needs to be minimized becomes,

L(θ) =
(
α||φt−2 − φ̂t−2||2 + β||φt−2 − φ̂t−2||∞

+γ

∣∣∣∣∣∣∣∣∂2φt−2∂x2

∣∣∣∣∣∣∣∣
1

)
/||φ̂t−2||∞ + λ||θ||2 (8)

where θ corresponds to weights and biases of the CNN.
The relative weightage of each term is controlled by the
relative values of α, β, γ, and λ, following the relation
α >> λ > β ∼ γ. The reason behind choosing such
relative magnitudes is that, one would like the neural net
to first decrease the L2 error between the prediction and
training data as much as possible, and once it is small
enough, then focus on making the solution smooth or
decreasing the maximum difference. This way we were
able to achieve good learning.

4. Results
4.1. Varying the Hyperparameters

We proceed to vary important hyperparameters of the
two models and observe their effect on the training and
testing error. Training data included waves of differ-
ent amplitudes and 300 possible different times t. For
each amplitude we created 20 time-series with added
Gaussian noise where unless specified differently, it was
N (µ = 0, σ = 0.02). For the testing data we used wave

4

ηtηt−1ηt−k

 t t−1 t−k

φt
−2

Evolution

Equations

 t+1

ηt+1

t! t+ 1

t! t+ 1

Input Convolution Pooling Flatten Fully Output
Connected

Figure 1. The implemented convolutional neural net (CNN) architecture coupled with the evolution equations (5).

Figure 2. The implemented LSTM-RNN architecture coupled
with the evolution equations (5).

amplitudes which were up to 20% higher than those used
for training. A number of hyperparameters like learning
rate, grid resolution, number of time-delays considered
in the input and noise were varied.

For a limited number of epochs (100, with a batch
size of 25 and total of 32 batches in each epoch), having
a very small learning rate slows down convergence and
one would need a large number of epochs to reach some
minima. Thus, because of having a limited number of
epochs, we are not able to converge much and hence the
high training and test errors (fig. 3). Even having a very
large learning rate does not help, as one would prob-
ably overshoot minima and might not converge or even
diverge. Hence in general there exists a sweet spot in be-
tween, which is very much prominent in fig. 3 especially
for the CNN, while for LSTM-RNN we will requite to

go even lower. For this case, the optimal learning rate
lies around 10−3 for CNN, and 10−4−10−5 for LSTM-
RNN (fig. 3).

Next we see the how learning is affected by increas-
ing grid resolution. The governing equations involve
partial derivatives w.r.t to space and time, which are es-
sentially local features and motivated the use of CNN.
One could imagine that the filter could possibly be repre-
senting the action of differentiation. As we increase the
grid resolution, such derivatives become more and more
accurate. Hence one would expect the performance of
the CNN to improve with increase in resolution. Also at
the same time, the number of weights in the architecture
also scales up with the grid resolution. Thus, one would
expect the training and test error to rapidly decrease at
first and then level-out while further increasing the res-
olution. This trend is more-or-less followed in fig. 3.
As there is not much improvement after 61 grid points,
hence we use it in all other results for CNN. On the other
hand, LSTM-RNN appears to be more robust to chang-
ing grid resolution (fig. 3).

We have also investigated the effect of introducing
noise to the training data. We add standard normal Gaus-
sian noise to normalized free surface elevation (η) and
free surface potential (ψ) (normalized respectively with
their maximum value present in the data) while training.
One would expect increase in both training and testing
error on increasing the standard deviation of the noise,
which is also depicted in fig. 3. However, adding noise
allowed us to avoid overfitting and thus increase the ac-
curacy of prediction in time.

The last hyperparameter which we investigated was
the number of time-delays considered in the input. For
both CNN and LSTM-RNN, error increases if we take
less number of time-delays, which makes sense because
we are adding less amount of “complementary dynam-

5

ics”. On increasing the number of time-delays the errors
for LSTM-RNN flattens out as after a point the LSTM
just ignores the additional time-delays used. But CNN
appears to overfit after a certain number of time-delays
with the testing error increasing as seen in fig. 3.

[12]

4.2. Coupling

For the next step, we couple our trained neural net ar-
chitectures with the free surface evolution equations (5).
We test our hybrid model on the propagation of regu-
lar waves on a periodic cell. We pick one of the waves
which we used for testing in the previous subsection, and
evolve it in time for one period. Throughout the simu-
lation, we track the error in the conservation of mass,
momentum and energy. Results of the simulations are
presented in fig. 4. For time t = 2.3524 = T/2 (which
corresponds to half the period), both models do a good
job at approximating the free surface elevation. How-
ever, for t = 4.7049 = T (which corresponds to one
period), both methods have deviated from the numerical
solution, presenting a non-smooth free surface elevation.

In order to track the performance of both the methods
over time for wave propagation, we track their ability to
preserve physical quantities like mass (M), energy (E)
and momentum (P). For the initial stage of the evolu-
tion, LSTM does a pretty good job in preserving these
quantities compared to CNN. However in the long run,
both of them produce significant errors in the conserva-
tion of these quantities, making long-time simulations
difficult for the current setup. The larger memory band-
width of LSTM-RNN maybe the reason why it is better
able to perform better in the initial stages of the evolu-
tion as compared to CNN.

4.3. Solitary Wave

Now we turn our attention to the physical problem of
reflection of a solitary wave over a vertical impermeable
wall. The configuration of the problem is presented in
fig. 5. We train on data for reflection of solitary waves
of amplitude a/h0 = 0.05 : 0.025 : 0.225, where h0
is the depth of the domain. We test our LSTM model
for solitary wave of amplitude a/h0 = 0.25. We use
horizontal discretization nx = 101. For this problem,
we assume the time-series of η and ψ given. We now
seek to compute inner fluid quantities like pressure and
velocities, as well as the force acting on the wall due to
the wave. Results are presented in fig. 6. We use two
metrics to measure the accuracy of our hybrid approach
in this case. The first one is the comparison of the time-
series of the force acting on the wall (Fw), compared
with the results produced by a numerical PDE solver
[7]. For this quantity, we see a very good match with

the high accuracy results provided by the PDE solver.
For the second metric, we utilize the fact that the free
surface is a material surface, and thus cannot take any
load. As a result, assuming constant atmospheric pres-
sure above the free surface (which can always be set to
0 with appropriate rescaling), we know the pressure on
the free surface should exactly be zero. Hence we mea-
sure the large deviation from this value which is 0.02 for
the normalized pressure (Psurf/ρgh0), where ρ is the
density of the water and g is the acceleration of gravity.
This metric is also adequately satisfied showcasing the
model’s ability to mimic the physics of the problem.

4.4. Computational Cost Comparison

Now we will compare the computational cost of solv-
ing the classical formulation (Laplacian equation (2) +
evolution equations (5)) with a hybrid formulation (Neu-
ral Net + evolution equations (5)). As the NN part was
coded in Python, while the original numerical solver was
implemented in C, hence direct comparison of computa-
tional costs is not possible. Thus we will compare the
FLOPS required to solve the Laplacian equation for the
velocity potential in a 2D domain, with a feed-forward
pass of the implemented NNs. Let us assume that the
2D domain is discretized into nx number of points in
the horizontal (x) direction, and nz number of points
in the vertical (z) direction. Then solving the Lapla-
cian equation (2) using LU-Decomposition would incur
a FLOP count which scales asymptotically as O(n3xn

3
z).

While FLOP count for feed-forward pass for both CNN
and LSTM-RNN would scale as O(kn2

x), considering k
time-delays used. Hence once trained, the NN imple-
mentation will decrease the computational requirements
significantly.

5. Conclusions/Future Work
In this work, we investigated the use of neural nets

(NNs) for solving the water wave problem in a hybrid
approach. In this hybrid approach, we replace the most
computationally expensive part of the solver with a NN,
while keeping the other parts the same. Overall neural
nets appear to be promising for solving PDE’s and a fu-
ture viable alternative to conventional numerical solvers.
This is mainly due to their ability to bring down the
FLOP count requirements. Both LSTM-RNN and CNN
implementations had similar performance in terms of
approximating the evolution of free-surface, but CNN
performs worse in preserving physical quantities like
mass, momentum and energy over time. It was also
shown that NNs can also be used to compute quanti-
ties in the interior of the fluid by using data only at the
free surface. An interesting observation was that, in-
troducing noise while training actually improved the ro-

6

Figure 3. Effect of varying hyperparameters on the testing and training error for both CNN and LSTM-RNN implementations.

Figure 4. Wave propagation using both CNN and LSTM-RNN. The top two plots shows the snapshots of free surface elevation at
two different time instants. The next three plots capture the conservation error of mass (M), momentum (P) and energy (E) with
time. Red color corresponds to CNN and blue to LSTM-RNN.

bustness of our while evolution in time. However, more
research needs to be done to improve the long time ac-

curacy of our models.

Due to similar level of performance, in the future

7

Figure 5. Configuration for reflection of solitary wave over a vertical wall.

Figure 6. Reflection of solitary wave due to a vertical, impermeable wall on the right. The top three plots depict the normalized
pressure, horizontal velocity and vertical velocity respectively. In the bottom-most figure, we plot the variation of force acting on
the wall with time. The blue line corresponds to the LSTM prediction and the black circles to a numerical PDE solver.

we can combine the property of LSTM for long-term
memory retention and further reduce the FLOP count by
stacking it with a convolutional layers. Also incorporat-
ing bathymetry in the input of NNs should improve their
performance and especially help when we have non-flat
bathymetry.

6. Work distribution
Both the authors equally contributed to the extensive

literature survey. The LSTM-RNN model was imple-
mented by Alexis, while CNN model by Abhinav. Also
both the authors had equal contribution in making the
presentation and writing this manuscript. We would also
like to acknowledge the contribution of Shashank Agar-
wal in the initial literature survey when we were select-
ing the topic of the project.

References
[1] G. Athanassoulis and C. Papoutsellis. Exact semi-

separation of variables in wave guides with nonplanar

boundaries. Proc. R. Soc. Lond. A.=, 473, 2017.

[2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-
term dependencies with gradient descent is difficult.
IEEE transactions on neural networks, 5(2):157–166,
1994.

[3] M. Chu and N. Thuerey. Data-driven synthesis of smoke
flows with cnn-based feature descriptors. ACM Transac-
tions on Graphics (TOG), 36(4):69, 2017.

[4] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[5] J. Luke. A variational principle for a fluid with a free
surface. Journal of Fluid Mechanics, 27, 1967.

[6] C. Mei, M. Stiassnie, and D. Yue. Theory and applica-
tions of ocean surface waves. 2005.

[7] C. Papoutsellis and G. Athanassoulis. A new efficient
hamiltonian approach to the nonlinear water-wave prob-
lem over arbitrary bathymetry. Journal of Fluid Mechan-
ics, 2017.

[8] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics
informed deep learning (part i): Data-driven solutions of

8

nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

[9] F. Takens. Detecting strange attractors in turbulence. In
Dynamical systems and turbulence, Warwick 1980, pages
366–381. Springer, 1981.

[10] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin.
Accelerating eulerian fluid simulation with convolutional
networks. arXiv preprint arXiv:1607.03597, 2016.

[11] K. Um, X. Hu, and N. Thuerey. Liquid splash model-
ing with neural networks. In Computer Graphics Forum,
volume 37, pages 171–182. Wiley Online Library, 2018.

[12] Z. Y. Wan, P. Vlachas, P. Koumoutsakos, and T. Sap-
sis. Data-assisted reduced-order modeling of extreme
events in complex dynamical systems. PloS one,
13(5):e0197704, 2018.

[13] S. Wiewel, M. Becher, and N. Thuerey. Latent-space
physics: Towards learning the temporal evolution of fluid
flow. arXiv preprint arXiv:1802.10123, 2018.

[14] Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempogan: A
temporally coherent, volumetric gan for super-resolution
fluid flow. arXiv preprint arXiv:1801.09710, 2018.

[15] C. Yang, X. Yang, and X. Xiao. Data-driven projection
method in fluid simulation. Computer Animation and
Virtual Worlds, 27(3-4):415–424, 2016.

9

