Abhinav Gupta

Industry professional interested in developing ML/AI methods for solving complex real-world problems.

Education

Massachusetts Institute of Technology

PhD in Mechanical Engineering and Computation (GPA: 4.9/5)

• Thesis: Scientific Machine Learning for Ocean Applications | Minor: Technology and Policy

• Wunsch Foundation Silent Hoist and Crane Award for Outstanding Graduate Student

Indian Institute of Technology Kanpur

Master's (GPA: 10/10) & Bachelor's (GPA: 9.9/10) in Mechanical Engineering

- Department Rank 1 | General Proficiency Medal; Banco Foundation Award; OP Bajaj Memorial Award
- Master's Thesis: Bayesian Inference of Obstacle Systems and Coupled Biogeochemical-Physical Model

Experience

Large Molecule Research, Sanofi

Senior Machine learning Scientist, Next Generation Biologics Design

Research Profile:

- Developing state-of-the-art ML/AI technologies to solve challenges in real-world drug discovery
- Protein design and engineering using large language models, structure prediction, generative AI, and more
- Filed one provisional patent, 3 internal research presentations, and conducted one conference workshop

Allied Contributions:

- Managed one co-op and leading a collaborative team for development of new deep learning models
- Contributed to evaluations and negotiations leading to a multi-million dollar strategic collaboration

Multidisciplinary Simulation, Estimation, Assimilation Systems (MSEAS) Lab, MIT Cambridge, MA Jan 2017 – Jul 2022 Research Assistant Summer 2014 & 15

Undergraduate Visiting Student (S.N. Bose Scholar)

Research Profile:

- Advanced algorithms on the intersection of uncertainty quantification, Bayesian modeling and inference, deep learning, and computational physics for high-dimensional and multidisciplinary problems – Scientific Machine Learning (SciML)
- Developed a delay-differential-equations-based deep learning framework to learn missing parts of dynamical system models; applications include refining coarse models, simplification of complex real-world models, and more
- Developed a partial-differential-equations-based Bayesian machine learning framework for model discovery; has applications in learning ocean ecosystem models, sustainable fisheries management, brain tumor modeling and more
- Published 3 first author and 9 co-author papers in peer-reviewed literature | Journal cover-image feature
- 19 Research presentations: Including AGU (Dec'19; Feb'18); IEEE Oceans (Oct'19); IISc Bangalore (Jul'19, Aug'21); Indian Space Res. Org. (Jul'19); SIAM (Mar'19; May'21); Caltech (Jul'21) | SLAM Student Travel Award | MIT-CCSE'21 Best Poster

Allied Contributions:

- Developed collaboration protocols to facilitate a multi-university-research project across 5 universities
- Mentored 3 undergraduate and 3 high-school interns on research projects
- Helped generate ideas and contributed to the writing of in-total 5 research grants

Tech Stack: Python, PyTorch, Lightning, MATLAB

Fellowships

MathWorks Mechanical Engineering Fellowship

• Awarded to 3 out of 500 graduate students for exceptional academic performance

MIT-Tata Center for Technology & Design Fellow

• Studied interplay of technology, entrepreneurship, and policy; and deepened perspectives on severely resource-constrained communities by interviewing Indian fishermen, non-profits, and government institutions

Cambridge, MA *Jan 2017 – July 2022*

Kanpur, India Jul 2011 – Jun 2016

Cambridge, MA Aug 2022 – Present

2018 - 20

2020 - 21

Leadership

Graduate Student Council Representative (2019-20) - Represented interests of Mechanical Engineering graduate students at institute-wide graduate student council

Cultural Chair, Sangam (2017-18) – Served the Indian community by organizing cultural events; led 8-member team to conduct 3-day orientation for incoming Indian students

Social Chair, Graduate Association of Mechanical Engineers, MIT (2019-20)
Hall Councilor, SP Grad Housing (2018-20)
Secretary, Aeromodelling Club, IIT Kanpur (2012-13)
Student Guide, Counselling Service, IIT Kanpur (2012-13)

Hobbies

Hosting traditional Indian cuisine dinner nights • Exploring history and culture of different countries by collecting coins

Publications

Gupta, A., Lermusiaux, P.F., 2023. Generalized neural closure models with interpretability. Nature Scientific Reports 13, 10634.

Gupta, A. and Lermusiaux, P.F., 2023. Bayesian learning of coupled biogeochemical-physical models. *Progress in Oceanography*, p.103050.

Gupta, A. and Lermusiaux, P.F., 2021. Neural closure models for dynamical systems. *Proceedings of the Royal Society A*, 477(2252), p.20201004.

Gupta, A., Haley, P.J., Subramani, D.N. and Lermusiaux, P.F., 2019. Fish modeling and Bayesian learning for the Lakshadweep Islands. In *Oceans 2019 MTS/IEEE Seattle* (pp. 1-10). IEEE.

Gupta, A. and Saha, A.K., 2019. Suppression of vortex shedding in flow around a square cylinder using control cylinder. *European Journal of Mechanics-B/Fluids*, 76, pp.276-291.

Kulkarni, C.S., **Gupta, A**. and Lermusiaux, P.F., 2020. Sparse regression and adaptive feature generation for the discovery of dynamical systems. In *Dynamic Data Driven Applications Systems: Third International Conference, DDDAS 2020, Boston, MA, USA, October 2-4, 2020, Proceedings 3* (pp. 208-216). Springer International Publishing.

Haley, P.J., **Gupta, A.**, Mirabito, C. and Lermusiaux, P.F., 2020. Towards Bayesian ocean physical-biogeochemical-acidification prediction and learning systems for Massachusetts Bay. In *Global Oceans 2020: Singapore–US Gulf Coast* (pp. 1-9). IEEE.

Lermusiaux, P.F., Mirabito, C., Haley, P.J., Ali, W.H., Gupta, A., et al., 2020. Real-time probabilistic coupled ocean physicsacoustics forecasting and data assimilation for underwater GPS. In *Global Oceans 2020: Singapore–US Gulf Coast* (pp. 1-9). IEEE.

Ali, W.H., Mirhi, M.H., **Gupta, A.**, Kulkarni, C.S., Foucart, C., Doshi, M.M., Subramani, D.N., Mirabito, C., Haley Jr, P.J. and Lermusiaux, P.F., 2019, October. Seavizkit: Interactive maps for ocean visualization. In *Oceans 2019 MTS/IEEE Seattle* (pp. 1-10). IEEE.

Doshi, M., Kulkarni, C.S., Ali, W.H., **Gupta, A.,** Lermusiaux, P.F., Zhan, P., Hoteit, I. and Knio, O., 2019. Flow maps and coherent sets for characterizing residence times and connectivity in Lagoons and coral reefs: The case of the Red Sea. In *Oceans* 2019 MTS/IEEE Seattle (pp. 1-8). IEEE.

Lermusiaux, P.F., Doshi, M., Kulkarni, C.S., **Gupta, A.**, Haley, P.J., Mirabito, C., et al., 2019. Plastic pollution in the coastal oceans: Characterization and modeling. In *Oceans 2019 MTS/IEEE Seattle* (pp. 1-10). IEEE.

Kulkarni, C.S., Haley, P.J., Lermusiaux, P.F., Dutt, A., Gupta, A., Mirabito, C., et al., 2018. Real-time sediment plume modeling in the Southern California Bight. In *Oceans 2018 MTS/IEEE Charleston* (pp. 1-10). IEEE.

Lermusiaux, P.F., Subramani, D.N., Lin, J., Kulkarni, C.S., Gupta, A., Dutt, A., Lolla, T., Haley, P.J., Ali, W.H., Mirabito, C. and Jana, S., 2017. A future for intelligent autonomous ocean observing systems. *Journal of Marine Research*, 75(6), pp.765-813.

Lermusiaux, P.F., Haley Jr, P.J., Jana, S., **Gupta, A.,** Kulkarni, C.S., Mirabito, C., Ali, W.H., Subramani, D.N., Dutt, A., Lin, J. and Shcherbina, A.Y., 2017. Optimal planning and sampling predictions for autonomous and Lagrangian platforms and sensors in the northern Arabian Sea. *Oceanography*, *30*(2), pp.172-185.