
ACTIVE RANK-1 UPDATES TO POD BASED REDUCED ORDER
MODELS∗

ABHINAV GUPTA† AND RENEE SWISCHUK‡

Abstract. Simulating physical systems is often a computationally expensive task. Data driven
reduced order models are typically applied in these situations and provide accurate and low cost
evaluations of the system. In some cases, changes in resources or system state may cause such
models to become unreliable and inaccurate in new domains. Costly reconstructions of the reduced
order model at each system change can sacrifice the speed benefits of using a reduced order model.
This project investigates a method for efficiently updating a reduced order model online, as new data
becomes available corresponding to system changes. New data is incorporated as low rank updates
to proper orthogonal decomposition (POD) basis and reduced operators that allow the reduced order
model to adapt with the system domain. This dynamic approach is competitive in accuracy compared
to rebuilding the method from scratch, but is able to significantly decrease time complexity. The
method is demonstrated on the advection-diffusion equation and we show that after sufficient data
has been incorporated, our dynamic reduced order model is able to converge to the accuracy of the
true model by making efficient updates online.

Key words. Proper Orthogonal Decomposition (POD), Rank-1 Updates, SVD, Reduced order
models

1. Introduction. Model reduction of parameterized partial differential equa-
tions (PDEs) involves constructing a reduced order model (ROM) using the available
full state samples corresponding to a particular region in the parameter space. One
such method projects the full order model using the Proper Orthogonal Decomposi-
tion (POD) basis. Reduced order models can be efficiently used to predict accurate
responses of the system in a local region of the parameter space. But, the ROM be-
comes inaccurate if the set of parameter values lies far from the original region used to
construct the ROM. In many real situations, changes in resources or the evolution of
the state may require this parameter region to change over time. Although, rebuilding
a new ROM for a changing parameter space can become computationally expensive,
as a new POD basis must be constructed with each change. According to Peherstorfer
and Willcox [2], an evolving ROM can be constructed online, by representing changes
to the model as low rank updates from the new parameter region. Using this low
rank representation, a powerful and efficient algorithm for computing an updated
singular value decomposition (SVD) [1], and thus a new POD basis, can be applied
to dynamically update our ROM at a low cost, while maintaining accuracy over the
parameter region. The rest of this paper is formatted as follows. Section 2 includes
a discussion of the reduced order modeling framework as well as the problem setting
of adapting ROMs online from snapshot updates. We detail the algorithms used for
making rank-1 updates to a SVD and adapting our reduced basis and operators. We
demonstrate our dynamic ROM in Section 3, with an application of the advection-
diffusion equation and analyze the benefits of the method. Section 4 concludes the
paper. This project is entirely inspired by Peherstorfer and Willcox [2].

2. Algorithm. In this section, we will see the building blocks of the dynamic
ROM.

∗Submitted to the instructor of 18.335 on 05/17/2018.
†Department of Mechanical Engineering, MIT (guptaa@mit.edu).
‡Department of Aeronautics and Astronautics, MIT (swischuk@mit.edu).

1

mailto:guptaa@mit.edu
mailto:swischuk@mit.edu

2 ABHINAV GUPTA AND RENEE SWISCHUK

2.1. Full Order Models. Consider a full order model (FOM) based on a pa-
rameterized PDE. Discretization leads to the system of equations

A(µ)y(µ) = f(µ),(2.1)

with N ∈ N spatial dimensions coming from the discretization of PDE. Here µ =[
µ1, . . . , µd

]
∈ D with d ∈ N is the parameter set, which acts as an input to our

system. We have the operator A(µ) ∈ RN×N , the state vector y(µ) ∈ RN , and the
right-hand side f(µ) ∈ RN .

We assume that the operator A(µ) can be represented with an affine parameter
dependence, thus it can be written as a linear combination,

A(µ) =

lA∑
i=1

θiA(µ)Ai,(2.2)

of operators independent of µ

Ai, . . . ,AlA ∈ RN×N ,(2.3)

and lA ∈ N functions θ1A, . . . , θ
lA
A : D → R. Similarly we can write f(µ) also as a linear

combination of parameter independent vectors f1, . . . , f lf ∈ RN and lf ∈ N functions

θ1f , . . . , θ
lf
f : D → R,

f(µ) =

lf∑
i=1

θif (µ)f i.(2.4)

In general, N is very large, making simulations of the FOM unfeasible. This issue is
overcome with the application of reduced order models.

2.2. Reduced Order Models. Consider a snapshot matrix containing m ∈
N linearly independent state vectors generated by solving 2.1 for parameter sets
µ1, . . .µm ∈ Do,

Yo =
[
y(µ1), . . . ,y(µm)

]
∈ RN×m.(2.5)

POD is a method to construct an n-dimensional basis v1, . . . ,vn ∈ RN such that
the snapshots 2.5 are optimally represented by their orthogonal projections onto the
subspace span{v1, . . . ,vn} ⊂ span{y(µ1), . . . ,y(µm)} ⊂ RN . The POD basis vectors
v1, . . . ,vn ∈ RN are the left singular vectors corresponding to the n largest singular
values of the snapshot matrix 2.5. Hence, to compute the POD basis for the snapshots
in 2.5, we start with the singular value decomposition (SVD) of the snapshot matrix
Yo, and the singular vectors corresponding to the n largest singular values forms the
required POD basis. The truncated SVD is defined as

Y0 ≈ V0Σ0W
T
0 ,(2.6)

where the matrices Vo =
[
v1, . . . ,vn

]
∈ RN×n, Wo =

[
w1, . . . ,wn

]
∈ Rm×n are the

n left and right singular vectors, respectively and Σo ∈ Rn×n is a diagonal matrix
containing the largest n singular values in decreasing value. To derive the ROM of
the FOM in 2.1, we start by constructing µ-independent reduced operators,

Ãi
o = VT

o AiVo ∈ Rn×n, i = 1, . . . , lA(2.7)

ACTIVE RANK-1 UPDATES TO POD BASED REDUCED ORDER MODELS 3

and the µ-independent reduced right-hand sides

f̃ io = VT
o f i ∈ Rn, i = 1, . . . , lf(2.8)

by taking their orthogonal projections on Vo. By defining the reduced state vector
as ỹo = VT

o yi ∈ Rn, we can write the ROM as,

Ão(µ)ỹo =

lA∑
i=1

θiA(µ)Ãi
oỹo =

lf∑
i=1

θif (µ)f̃ io = f̃o(µ)(2.9)

Hence instead of solving the full order system of dimension N , we just need to solve
a system of reduced dimension n, and in general we choose n << N based on the
singular value spectrum.

2.3. Problem Setting. Since our ROM is based on the POD basis, Vo, cor-
responding to the region Do ⊂ D, solutions will be highly accurate for any µ ∈ Do.
Now, consider that due to an internal system or resource change, our region of in-
terest changes from D0 to D1 in the parameter space. Our original ROM becomes
obsolete in this new region. In such a case, we would like to adapt our ROM to the
new region of interest by updating our POD basis Vo, reduced operators Ãi

o and
the reduced right-hand side f̃ io, using full-state samples corresponding to parameters
in D1. Recall that the FOM is very expensive to evaluate, thus samples from this
new region will slowly become available over time. Instead of waiting for a sufficient
number of new snapshots to become available, we consider successively updating our
ROM by initially replacing or appending columns to our original snapshot matrix
Yo. With the arrival of each new snapshot, the SVD is computed and a new ROM is
constructed. Eventually, this will produce a ROM that is highly accurate in the new
region, D1, but at an extremely high cost which may render the approach infeasible.
Hence, our goal is to perform these updates in a computationally cheap way, using
fast low-rank modifications of the thin singular value decomposition [1] as suggested
by Peherstorfer [2].

In what follows, we will successively adapt the ROM in h = 1, . . . ,m′ adaptivity
steps during the online phase where m′ ∈ N. At each step h we receive a full state-
vector ŷ(µm+h) ∈ RN with µm+h ∈ D1. At the first adaptivity step h = 1, we receive
the sensor sample ŷ(µm+1). We first consider replacing the snapshot y(µ1) in the
snapshot matrix Yo with this new sample and denote the new snapshot matrix by
Y1. We continue this process and at step h we obtain the updated snapshot matrix

Yh =
[
ŷ(µm+1), . . . , ŷ(µm+h),y(µh+1), . . . ,y(µm)

]
∈ RN×m.(2.10)

We can generalize an update at step h as a rank-1 update to the snapshot matrix at
step h− 1, i.e.

Yh = Yh−1 + aeT
h ,(2.11)

where a = ŷ(µm+h) − y(µh) ∈ RN and eh ∈ Rm is a unit vector with 1 at the h-th
component and 0 everywhere else. This formulation makes the algorithm presented
in [1] applicable, which is explained in the following subsection.

2.4. Rank-1 updates to SVD. At adaptivity step, h, we make a rank-1 update
to our snapshot matrix. To subsequently update our ROM, we must also incorporate
this snapshot information into a new POD basis. This requires a rank-1 update to

4 ABHINAV GUPTA AND RENEE SWISCHUK

the SVD of Yh−1. Assuming, we already know the rank-n SVD of Yh−1, we make
use of the algorithm derived by Brand in [1]. Let the rank-n SVD of Yh−1 be given
by Vh−1Σh−1W

T
h−1, where Vh−1 ∈ RN×n, Wh−1 ∈ Rm×n and Σh−1 ∈ Rn×n. We

are interested in the SVD of,

Yh−1 + aeT
h =

[
Vh−1 a

] [Σh−1 0
0 1

] [
Wh−1 eh

]T
(2.12)

Also we are interested in the case where rank(Yh−1 + aeT
h) ≤ n + 1 < min(N ,m)

because in general n << N .

Although

[
Σh−1 0

0 1

]
is diagonal, but

[
Vh−1 a

]
and

[
Wh−1 eh

]
are not or-

thonormal bases. Hence a logical, first step would be to make them orthonormal.
Lets first focus on

[
Vh−1 a

]
. We project out columns of Vh−1 from a and then

normalize it. We define,

m = VT
h−1a; p = a−Vh−1m; Ra = ||p||; P = Ra

−1p(2.13)

hence, [
Vh−1 a

]
=
[
Vh−1 P

] [I m
0 Ra

]
(2.14)

Similarly for
[
Wh−1 eh

]
we could define,

n = WT
h−1eh; q = eh −Wh−1n; Reh = ||q||; Q = Reh

−1q(2.15)

hence, [
Wh−1 eh

]
=
[
Wh−1 Q

] [I n
0 Reh

]
(2.16)

Rewriting 2.12 as,

Yh−1 + aeT
h =

[
Vh−1 P

]
K
[
Wh−1 Q

]T
(2.17)

where,

K =

[
I m
0 Ra

] [
Σh−1 0

0 1

] [
I n
0 Reh

]T
=

[
Σh−1 0

0 0

]
+

[
m
Ra

] [
n
Reh

]T
(2.18)

Since K ∈ R(n+1)×(n+1), taking its SVD (let K = V′Σ′W′T) is comparatively cheaper
than the SVD of our snapshot matrix. Also it turns out that V′ and W′ are the
required rotations to convert

[
Vh−1 P

]
and

[
Wh−1 Q

]
to left and right singular

vectors respectively. Finally we can write,

Yh−1 + aeT
h =

([
Vh−1 P

]
V′
)
Σ′
([

Wh−1 Q
]
W′)T

= VhΣhWT
h(2.19)

which is the required SVD.
The above SVD update algorithm could also be extended to the case when we

want to append new columns to the snapshot matrix. After h-adaptivity steps, we
obtain the following snapshot matrix,

Yh =
[
y(µ1), . . . ,y(µm), ŷ(µm+1), . . . , ŷ(µm+h)

]
∈ RN×(m+h)(2.20)

ACTIVE RANK-1 UPDATES TO POD BASED REDUCED ORDER MODELS 5

Appending new snapshots can also be written in the form of a rank-1 update as in
2.11, where now a = ŷ(µm+h) ∈ RN and eh ∈ Rm+h with all 0’s except a 1 in the
(m+ h)th element.

The projection steps in 2.13 and 2.15 are currently written in a Classical Gram
Schmidt (CGS) fashion, we can replace them with Modified Gram Schmidt (MGS)
fashion without incurring any additional cost, as shown in Algorithms 2.3 and 2.4.
The effect of CGS vs MGS on accuracy of the scheme is be discussed later in the
Section 3.

2.5. Adapting the reduced operators. After computing the updated POD
basis Vh, we can now adapt our reduced operators and right hand side vectors as,

Ãi
h = VT

h AiVh, i = 1, . . . , lA(2.21)

f̃ ih = VT
h f i, i = 1, . . . , lf(2.22)

This may involve unnecessary matrix multiplications, and one would like to make use
of the previous reduced operators, Ãi

h−1 and f̃ ih−1.
Consider rewriting Vh from 2.19 as

Vh = Vh−1V
′
h + cdT ,(2.23)

where V′h = V′(1 : end − 1, 1 : end − 1), c = P and d = V′(end, 1 : end − 1)T in
MATLAB’s notation. Taking advantage of the structure 2.23, we represent 2.21 as

VT
h AiVh =

(
Vh−1V

′
h + cdT

)T
Ai
(
Vh−1V

′
h + cdT

)
= V′

T
hVT

h−1A
iVh−1V

′
h + dcT AiVh−1︸ ︷︷ ︸

Bi
h−1

V′h + V′
T
hVT

h−1A
icdT + dcTAicdT︸ ︷︷ ︸
Ci

hcd
T

= V′
T
h︸︷︷︸

n×n

Ãi
h−1︸ ︷︷ ︸

n×n

V′h︸︷︷︸
n×n

+ dcT︸︷︷︸
n×N

Bi
h−1︸ ︷︷ ︸
N×n

V′h︸︷︷︸
n×n

+ Ci
h︸︷︷︸

n×N

cdT︸︷︷︸
N×n

(2.24)

where Bi
h−1 = AiVh−1 ∈ RN×n and Ci

h = VT
h Ai ∈ Rn×N are some auxiliary quan-

tities for i = 1, . . . , lA. These auxiliary quantities can also be constructed recursively,

Bi
h = Bi

h−1V
′
h + AicdT , i = 1, . . . , lA(2.25)

Ci
h = V′

T
hCi

h−1 + dcTAi, i = 1, . . . , lA(2.26)

and Bi
o = AiVo and Ci

0 = VT
0 Ai are computed initially. Similarly, we can update

our reduced right hand side as

f̃ ih = V′hf̃ ih−1 + (cd′)′f i(2.27)

2.6. Implementation. By combining low rank updates to SVD and the adapted
reduced operators explained in Sections 2.4 and 2.5, we can compute a dynamic ROM.
Algorithm 2.1 explains the rank-1 updates to our singular vectors and values, and
Algorithm 2.2 shows how to update the auxillary quantities. The entire process is
shown in Algorithm 2.5. The basic steps are to begin with an initial ROM and at
each snapshot update, compute our new SVD, update our snapshot matrix, update our
auxillary quantities and compute the reduced operators needed to make predictions
with our new ROM.

6 ABHINAV GUPTA AND RENEE SWISCHUK

Algorithm 2.1 Rank-1 Update to SVD

1: Function Rank1UpdateSVD(Vh−1, Sh−1,Wh−1, a, b)
2: m = V T

h−1a; p = a− Vh−1m; Ra = ||p||l P = R−1a p;

3: n = WT
h−1b; q = b−Wh−1n; Rb = ||q||; Q = Rbq;

4:

K =

[
S 0
0 0

]
+

[
m
||p||

] [
n
||q||

]T
5: [V ′, S′,W ′] = SV D(K)
6: Vh =

[
Vh−1 P

]
V ′

7: Wh =
[
Wh−1 Q

]
W ′

8: return Vh, V
′, S′,Wh,W

′

Algorithm 2.2 Auxillary Quantities

Function auxQU(Bh−1, Ch−1, A, c, d, V
′
h)

Bi
h = Bi

h−1V
′
h +AicdT for i = 1, ..., lA

Ci
h = V ′Th Ci

h−1 + dcTAi for i = 1, ..., lA
return Ch, Bh

Algorithm 2.3 MGS for p

p = a
for i = 1 : n

m(i, 1) = Vh−1(:, i)Tp
p = p−Vh−1(:, i)(m(i, 1))

Algorithm 2.4 MGS for q

q = eh

for i = 1 : n
n(i, 1) = Wh−1(:, i)Tq
q = q−Wh−1(:, i)(n(i, 1))

Algorithm 2.5 Dynamic POD Updates

Function AdaptPOD(Vh−1, Sh−1,Wh−1, Ãh−1, f̃h−1, A, f,Bh−1, Ch−1)
Receive new snapshot, ŷh(µ)
Update snapshot matrix, Y

a = ŷh(µ)− Y (:, h)
eh = hth canonical unit vector.
Y = Y + aeTh

[Vh, V
′, S′,Wh,W

′] = Rank1UpdateSVD(Vh−1, Sh−1,Wh−1, a, eh)
c = P ; d = V ′[end, 1 : end− 1]T ;V ′h = V ′[1 : end− 1, 1 : end− 1]
[Bh, Ch] = auxQU(Bh−1, Ch−1, A, c, d, V

′
h)

Adapt reduced operators
Ãi

h = V ′Th Ãi
h−1V

′
h + dcTBi

h−1V
′
h + Ci

hcd
T

f̃ ih = V T
h f

i
h−1 + (cdT)T f i

return

ACTIVE RANK-1 UPDATES TO POD BASED REDUCED ORDER MODELS 7

(a) Schematic of the physical domain of in-
terest. Td1 = 50

(b) Singular values for 900 snapshots col-
lected in a single region of the input domain.

Fig. 1: (a) Physical domain considered for Eq. 3.1 and (b) decay in singular values.

3. Numerical Results.

3.1. Application. To evaluate the performance of the algorithm, we consider
an application to the 2-D advection-diffusion equation. The equation is as follows

(3.1) u1
∂T

∂x
+ u2

∂T

∂y
− κ

(
∂2T

∂x2
+
∂2T

∂y2

)
= 0,

where µ = [u1, u2] ∈ D is our input representing the velocity in the x and y directions,
T is our solution quantity (state vector) representing the temperature distribution in
the 2-D space and κ is the coefficient of thermal diffusivity. A schematic of our
domain is presented in Figure 1a. We have a non-zero Dirichlet boundary condition
on a partial portion of the left boundary, T = 50 from y = [0.3, 0.7], while all other
boundary have zero Dirichlet boundary condition. The solution to this equation is
generally well behaved allowing the dynamics of the system to be captured well by
a Galerkin projection based technique such as POD. We consider a reduced order
model that has been built using 900 full order solutions simulated in the region µ ∈
[1, 2]×[0, 1] = D0 ⊂ D. Figure 1b shows a sharp decrease in the normalized magnitude
of the singular values, indicating a well posed problem for POD based model reduction.

In general, ROMs perform well in the local region of the parameter space that
was used to construct the model. Figure 2c shows a high accuracy solution when the
ROM is applied locally. Although, if we attempt to produce solutions that lie in a
new parameter domain µ ∈ [0, 1] × [1, 2] ∈ D1 ⊂ D, the performance diminishes as
shown in Figure 2d. This type of behavior provides a setting that will allow us to
emphasize the advantages of having a dynamically updated ROM.

Our adaptivity steps are performed by collecting new snapshots from a different
region of the input domain. The original region is D0 and at each update we will
incorporate snapshots from region D1. We will demonstrate the method of replacing
snapshots as well as appending snapshots.

3.2. Comparisons and Analysis of Results. As a benchmark comparison,
we consider the approach of taking the full SVD at each update step. While this is
expensive, it is highly accurate and provides a robust measure. As a performance
comparison we consider the approach of appending columns, instead of replacing
them, as well as using the static ROM that we started with.

8 ABHINAV GUPTA AND RENEE SWISCHUK

(a) (b)

(c) (d)

Fig. 2: Local performance of a ROM. Top: Full order model solutions. Bottom:
Reduced order model solutions. Left: a solution produced by an input that lives in
the domain of the ROM. Right: a solution produced by an input that lives outside
the range of the domain.

The method of appending columns should offer similar reduction in computational
cost when compared to full SVD, since the algorithm for computing rank-1 updates
of an SVD can be easily adapted to account for appending columns. Although, the
accuracy of this method is difficult to predict, particularly since the number of POD
basis vectors required typically increases with the size of the snapshot matrix. That
said, fixing the number of POD basis vectors for this method, should ideally make it
perform worse. Although, there is the possibility that the two regions share similar
characteristics that may be captured better when all the data is considered. In our
application, we have chosen a PDE with a linear behavior that produces predictable
results. If instead we chose a system whose dynamics change drastically throughout
the input domain or is highly non-linear, we would expect very poor performance when
appending columns if we do not increase the number of POD basis. Take for example,
structural health monitoring. If we have a ROM for the behavior of some material
when it is undamaged, and the material then becomes damaged, the dynamics of the

ACTIVE RANK-1 UPDATES TO POD BASED REDUCED ORDER MODELS 9

(a) Snapshots replaced (b) Snapshots appended

Fig. 3: Relative average error for the prediction of 25 test samples in the new region
against the FOM when dynamic ROM is updated using cheap Rank-1 updates vs
taking full SVD at each adaptivity step.

Fig. 4: Error in maintaining orthogonality of POD basis when projection step in
Rank-1 update to SVD algorithm is done in CGS vs MGS fashion. Benchmark for
comparison is taking full SVD at each adaptivity step.

model that described the damaged material will be entirely different. This situation
is one where the proposed method is a clear choice.

The method of using the static ROM, is a computationally free method online.
The original ROM is produced offline and no extra costs occur when data is being
collected online. While this method is extremely cheap, the performance in new
regions is very likely to be bad. The main goal of this comparison is to point out the
advantages that can be gained while considering new data online.

Figure 3a shows the comparison results when new snapshots are replaced. In this
figure, the true model corresponds to the ROM constructed using only snapshots in
the new region. Figure 3b shows the same comparisons except we are now appending
new snapshots. In this figure, the true model corresponds to the ROM constructed
using snapshots from both regions. In both plots we are able to see the error in our

10 ABHINAV GUPTA AND RENEE SWISCHUK

adaptive reduced order model converging to the error of the true model. We also see
that the our dynamic ROM is able to follow the benchmark comparison of taking
the full SVD at each step. In Figure 4, we confirm the fact that in computing the
projection steps 2.13 and 2.15 in a CGS fashion, we indeed loose orthogonality of
POD basis after a few adaptivity step as compared to the MGS fashion (Algorithms
2.3 and 2.4).

3.3. Time Complexity. Calculating the SVD of a matrix is typically done in
two steps [3]. The first step is to bidiagonalize the matrix using a method such as
householder reflectors. The second step is to then diagonalized this matrix using some
variant of QR or increasingly now by using a divide and conquer algorithm [3]. Let
us consider our snapshot matrix at each adaptivity step Yh ∈ RN×m with N >> m
(typically), the first step of bidiagonalizing Yh can be done in O(Nm2) flops [3].
In standard packages, the second step can be completed iteratively on the order of
O(m2) flops. The first step is the most expensive and dominates the cost, leaving the
computational complexity of calculating the SVD on the order of O(Nm2). Hence if
full SVD of the snapshot matrix is computed at each adaptivity step, then this would
lead to a cost of O(Nm2) for each update.

The method proposed in [1] provides a much more efficient alternative to the
expensive task of computing the SVD at each update. Updating the singular vectors
and values using low rank updates as outlined in Algorithm 2.1 reduces the need to
ever recompute a full SVD of matrix of size N ×m. The only step in this algorithm
which requires the computation of a full SVD is for the matrix K ∈ R(n+1)×(n+1) which
costs O(n3). The other most expensive steps are doing the rotations

[
Vh−1 P

]
V′

and
[
Wh−1 Q

]
W′ which entails a cost of O(Nn2) and O(mn2) respectively. This

may not seem very advantageous compared the the approach of taking the full SVD
which had a complexity of O(Nm2), but recall that N >> n and m >> n, where
N is typically on the order of millions (consider a 3-D discretization for example),
whereas m is almost always on the order of hundreds.

Directly updating the reduced operators in step 2.21 has a cost of O(N 2nlA),
which is unavoidable if computing the full SVD at each step. While when using the
Rank-1 SVD update algorithm 2.1, we have the advantage of writing our update POD
basis as Vh = Vh−1V

′+cdT (2.23) and update our reduced operators following 2.24.
The steps involving update to auxiliary matrices 2.26 is linear in N only in the case
when the operator matrices Ai, i = 1, . . . , lA are sparse, which is in general the
case with physical models. Hence overall we are able to keep the time complexity of
each adaptivity step as O(Nn2lA), which is linear in N , while computing full SVD
at every step would be quadratic in N .

4. Conclusions. In this project we investigated and implemented an algorithm
for efficiently updating reduced order models when new data gets available correspond-
ing to some new region of the parameter space. This was performed by generalizing
new data as rank-1 updates to a snapshot matrix and computing the fast rank-1 up-
date to its SVD. Hence at every adaptivity step, we were able to efficiently update
our POD basis, as well as reduced operators, and maintain an accurate reduced order
model (ROM) as it is changed with the evolving parameter region. By doing a time
complexity analysis, we proved that this method would significantly decrease runtime
when adapting a ROM to the new region in the online phase, while ultimately con-
verging in accuracy to the true ROM. We considered the effects of implementation
styles using CGS vs MGS and confirmed that the POD basis lacks orthogonality in
the CGS case. This method allows dynamical systems to be captured in real time,

ACTIVE RANK-1 UPDATES TO POD BASED REDUCED ORDER MODELS 11

whereas in general the computational burden of building a new reduced order model
from scratch renders this process infeasible. An important application of this work
is in the field of systems with changing unobservable parameters. This application
requires an additional additive update to reduced operators that remains as a future
extension of this project.

Acknowledgments. We would like to acknowledge the thought provoking dis-
cussions we had with Jing Lin and Arkopal Dutt of the MSEAS lab as well as Boris
Kramer of the acdl.

REFERENCES

[1] M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear algebra
and its applications, 415 (2006), pp. 20–30.

[2] B. Peherstorfer and K. Willcox, Dynamic data-driven reduced-order models, Computer
Methods in Applied Mechanics and Engineering, 291 (2015), pp. 21–41.

[3] L. N. Trefethen and D. Bau III, Numerical linear algebra, vol. 50, Siam, 1997.

	Introduction
	Algorithm
	Full Order Models
	Reduced Order Models
	Problem Setting
	Rank-1 updates to SVD
	Adapting the reduced operators
	Implementation

	Numerical Results
	Application
	Comparisons and Analysis of Results
	Time Complexity

	Conclusions
	References

